Primerdesign R00021 # **SARS-CoV-2 Winterplex** Kit version: 2 ### **Target regions:** SARS-CoV-2 (ORF1ab, S and M genes) Influenza A (Matrix protein gene) Influenza B (Non-structural protein 1 gene) RSV (M gene) # genesig®PLEX Kit 96 tests GENESIG Kits by Primerdesign For general laboratory and research use only ### **Product Description** The SARS-CoV-2 Winterplex kit detects multiple RNA viruses (SARS-CoV-2, influenza A, influenza B and RSV) which can each cause respiratory infections potentially leading to serious and potentially life-threatening complications. The Novel Coronavirus Disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 virus, posed a major threat to human health in 2020-2021. COVID-19 resulted in widespread morbidity and mortality and the SARS-CoV-2 virus is known to have infected more than 100 million people. While SARS-CoV-2 is still in circulation, other respiratory viruses are also causing serious illness. The Winterplex assay enables detection of influenza A (Flu A), influenza B (Flu B), and RSV infections, in addition to a SARS-CoV-2 test that targets three distinct regions of the SARS-CoV-2 genome. ### **Specificity** The kit is designed for the in vitro quantification of SARS-CoV-2, influenza A, influenza B and RSV genomes and to have a broad detection profile. Specifically, the primers will detect over 95% of sequences available on the GISAID database at the time of last review. The SARS-CoV-2 assays in this kit are predicted to cross react with bat coronavirus and pangolin coronavirus which would give signals in the FAM, Cy5 and ROX channels. The RSV assay in this kit is predicted to cross react with pangolin RSV-A which would give a signal in the ROX channel. The dynamics of genetic variation means that new sequence information may become available after the initial design. If you require further information or have a specific question about the detection profile of this kit then please send an e-mail to techsupport@primerdesign.co.uk and our team will answer your question. ### Kit contents | Quantity | Component | Tube | Cap Colour | |----------|---|------------|---------------------------------------| | 1 | ORF1ab/S/M primer/probe mix (including IEC primer/probe mix) (96 reactions) ORF1ab - FAM, S gene - Cy5, M gene - ROX and IEC - VIC labelled | | BROWN
(in silver foil
wrapper) | | 1 | FluA/FluB/RSV primer/probe mix (including IEC primer/probe mix) (96 reactions) FluA - FAM, FluB - Cy5, RSV – ROX and IEC – VIC labelled | - 1 X 1 2 | YELLOW
(in silver foil
wrapper) | | 1 | genesig [®] Winterplex positive control template | - 2010 | RED
(in red foil
wrapper) | | 4 | oasig [®] PLUS OneStep Lyophilised qPCR Master Mix (50 reactions per glass vial) | | GOLD
(in silver foil
wrapper) | | 4 | oasig [®] Master Mix resuspension buffer | PARCE. | BLUE | | 2 | genesig [®] Easy RNA internal extraction control | PARCE. | BLUE
(in gold foil
wrapper) | | 3 | Template preparation buffer for resuspension of internal control template and positive control template | N. William | YELLOW | | 1 | RNase/DNase free water for resuspension of primer/probe mixes | V.Hr. | WHITE | ## Reagents and equipment to be supplied by the user #### **Real-time PCR Instrument** Must be able to read fluorescence through FAM, HEX/VIC, ROX and Cy5 channels #### **Extraction kit** This kit is recommended for use with genesig® Easy DNA/RNA extraction kit or exsig®Mag. However, it is designed to work well with all processes that yield high-quality nucleic acid with minimal PCR inhibitors. #### **Pipettors and filter tips** Vortex and centrifuge 1.5 ml microtubes qPCR plates or reaction tubes ## Kit storage and stability This kit is stable for shipping at ambient temperature but should be stored at -20°C upon arrival. Once the lyophilised components have been resuspended, they should not be exposed to temperatures above -20°C for longer than 30 minutes at a time and unnecessary repeated freeze/thawing should be avoided. The kit is stable for six months from the date of resuspension under these circumstances. Primer Design Ltd does not recommend using the kit after the expiry date stated on the pack. ### Suitable sample material This kit can be used with all types of samples from various origins. Please ensure that the extracted nucleic acid samples are suitable in terms of purity, concentration, and RNA integrity. An internal extraction control is provided to test for non-specific PCR inhibitors. ## **Dynamic range of test** Under optimal PCR conditions the kit can achieve priming efficiencies between 90-110% and detect less than 100 copies of target template. ### Principles of the test #### **Real-time PCR** Individual primer and probes designed for each pathogen target have been combined into two reactions and these can be detected through the different fluorescent channels as described in the kit contents. The assay consists of primers and labelled probes in one test specific for SARS-CoV-2 (ORF1ab, S and M gene targets) in FAM, Cy5 and ROX channels respectively; and a second parallel test to detect Influenza A (Flu A), Influenza B (Flu B) and Respiratory Syncytial Virus (RSV) using FAM, Cy5 and ROX fluorophores respectively. The assay includes an internal extraction control (genesig® Easy RNA internal extraction control), which may be added to the nucleic acid extraction system (not provided) to prove efficient RNA extraction, detect PCR inhibition and confirm the integrity of the PCR run. The internal extraction control assay (which is from a non-biologically relevant, exogenous source) is present in both tests and the probe is labelled with the VIC fluorophore. The primer and probe mix provided exploits the so-called TaqMan® principle. During PCR amplification, forward and reverse primers hybridize to the target cDNA. A fluorogenic probe is included in the same reaction mixture which consists of a DNA probe labelled with a 5'-dye and a 3'-quencher. During PCR amplification, the probe is cleaved, and the reporter dye and quencher are separated. The resulting increase in fluorescence can be detected on a range of qPCR platforms. #### **Positive control** For a positive control, the kit contains a single positive control that contains templates for SARS-CoV-2 (ORF1ab, S and M gene targets), Influenza A (Flu A), Influenza B (Flu B) and Respiratory Syncytial Virus (RSV). The kit positive control will give a SARS-CoV-2 (ORF1ab, S and M gene targets) signal through the FAM, Cy5 and ROX channel when used with the ORF1ab/S/M primer/probe mix. The kit positive control will give an Influenza A (Flu A) signal through the FAM channel, an Influenza B (Flu B) signal through the Cy5 channel and an RSV signal through the ROX channel when used with the FluA/FluB/RSV primer/probe mix. Each time the kit is used, at least one positive control reaction for each primer/probe mix must be included in the run. A positive result indicates that the primers and probes for detecting the target gene worked properly in that particular experimental scenario. If a negative result is obtained the test results are invalid and must be repeated. Care should be taken to ensure that the positive control does not contaminate any other kit component which would lead to false-positive results. This can be achieved by handling this component in a Post PCR environment. Care should also be taken to avoid cross-contamination of other samples when adding the positive control to the run. This can be avoided by sealing all other samples and negative controls before pipetting the positive control into the positive control well. #### **Negative control** To validate any positive findings a negative control reaction should be included every time the kit is used. For this reaction the RNase/DNase free water should be used instead of template. A negative result indicates that the reagents have not become contaminated while setting up the run. It is also known as a No Template Control or NTC. #### **Internal RNA extraction control** When performing RNA extraction, it is often advantageous to have an exogenous source of RNA template that is spiked into the lysis buffer. This control RNA is then co-purified with the sample RNA and can be detected as a positive control for the extraction process. Successful co-purification and qPCR for the control RNA also indicates that PCR inhibitors are not present at a high concentration. Both the ORF1ab/S/M and FluA/FluB/RSV primer/probe mix contain a specific primer and probe mix to detect the exogenous RNA using qPCR. The primers are present at PCR limiting concentrations which allows multiplexing with the target sequence primers. Amplification of the control RNA does not interfere with detection of the target RNA even when present at low copy number. The Internal control is detected through the VIC channel and gives a Cq value of 28+/-3 depending on the level of sample dilution. ### **Resuspension protocol** To minimise the risk of contamination with foreign RNA, we recommend that all pipetting is performed in a PCR clean environment. Ideally this would be a designated PCR lab or PCR cabinet. Filter tips are recommended for all pipetting steps. #### 1. Pulse-spin each tube in a centrifuge before opening. This will ensure lyophilised primer/probe mix or template is in the base of the tube and is not lost upon opening the tube. # 2. Resuspend the primer/probe mix in the RNase/DNase free water supplied, according to the table below: To ensure complete resuspension allow primer/probe mix to rehydrate for 10 minutes at room temperature. Vortex each tube thoroughly, followed by pipetting up and down 10 times. Failure to mix well can produce poor kit performance. | Component - resuspend in water | Volume | | | |--|--------|--|--| | Pre-PCR pack | | | | | ORF1ab/S/M primer/probe mix (BROWN) | | | | | FluA/FluB/RSV primer/probe mix (YELLOW) | 220 µl | | | 3. Resuspend the internal control template and positive control template in the template preparation buffer supplied, according to the table below: To ensure complete resuspension, vortex each tube thoroughly. | Component - resuspend in template preparation buffer | Volume | | | | |--|---------|--|--|--| | Pre-PCR heat-sealed foil | | | | | | Internal extraction control RNA (BLUE) | 1000 µl | | | | | Post-PCR heat-sealed foil | | | | | | Positive Control Template (RED) * | 800 µl | | | | ^{*} This component contains high copy number template and is a VERY significant contamination risk. It must be opened and handled in a separate laboratory environment, away from the other components. 4. Resuspend the oasig[®]PLUS OneStep Lyophilised qPCR Master Mix in oasig[®] resuspension buffer, according to the table below: | Component - resuspend in template preparation buffer | Volume | |---|--------| | oasig®PLUS OneStep Lyophilised qPCR Master Mix (GOLD) | 525 µl | ### **RNA** extraction The internal extraction control RNA can be added either to the RNA lysis/extraction buffer or to the RNA sample once it has been resuspended in lysis buffer. DO NOT add the internal extraction control RNA directly to the unprocessed biological sample as this will lead to degradation and a loss in signal. - 1. Add 20 µl of the Internal extraction control RNA (BLUE) to each sample in RNA lysis/extraction buffer. - 2. Complete RNA extraction according to the manufacturer's protocols. ### OneStep RT-qPCR detection protocol #### For optimum performance and sensitivity. All pipetting steps and experimental plate set up should be performed on ice. After the plate is prepared proceed immediately to the OneStep amplification protocol. Prolonged incubation of reaction mixes at room temperature can lead to PCR artefacts that reduce the sensitivity of detection. Prepare 2 reaction mixes, one for each primer/probe mix according to the table below: Include sufficient reactions for all samples, positive and negative controls. ORF1ab/S/M reaction mix: | Component | Volume | | |---|--------|--| | oasig®PLUS OneStep Lyophilised qPCR Master Mix (GOLD) | 10 µl | | | ORF1ab/S/M primer/probe mix (BROWN) | | | | Final Volume | | | #### FluA/FluB/RSV reaction mix: | Component | Volume | | |---|--------|--| | oasig®PLUS OneStep Lyophilised qPCR Master Mix (GOLD) | 10 µl | | | FluA/FluB/RSV primer/probe mix (YELLOW) | | | | Final Volume | | | - 2. Pipette 12 μ I of these mixes into each well according to your experimental qPCR plate set-up. - 3. Pipette 8 μ I of RNA template into each well according to your experimental plate set-up. For negative control wells use 8 μ l of RNase/DNase free water (WHITE). For positive control wells use 8 μ l of the positive control template (RED). The final volume in each well is 20 μ l. ## qPCR amplification protocol Amplification conditions for oasig®PLUS OneStep Lyophilised qPCR Master Mix (GOLD) | | Step | Time | Temp | |-------------|-----------------------|--------|-------| | | Reverse transcription | 10 min | 55 °C | | | Enzyme activation | 2 min | 95 °C | | Cycling v45 | Denaturation | 10 s | 95 °C | | Cycling x45 | DATA COLLECTION * | 60 s | 60 °C | ^{*} Fluorogenic data should be collected during this step through the FAM, VIC, ROX and Cy5 channels ## Interpretation of results ORF1ab/S/M reaction mix: | Target
(FAM/Cy5/ROX) | Internal
control
(VIC) | Positive control | Negative
control | Interpretation | |-------------------------|------------------------------|------------------|---------------------|---| | FAM+ | +/- | + | - | SARS-CoV-2 ORF1ab
POSITIVE RESULT | | Cy5+ | +/- | + | - | SARS-CoV-2 S gene
POSITIVE RESULT | | ROX+ | +/- | + | - | SARS-CoV-2 M gene POSITIVE RESULT | | - | + | + | - | NEGATIVE RESULT | | +/- | +/- | + | ≤ 35 | EXPERIMENT FAILED due to test contamination | | +/- | +/- | + | > 35 | * | | - | - | + | - | SAMPLE PREPARATION FAILED | | +/- | +/- | - | +/- | EXPERIMENT FAILED | #### FluA/FluB/RSV reaction mix: | Target
(FAM/Cy5/ROX) | Internal
control
(VIC) | Positive
control | Negative
control | Interpretation | |-------------------------|------------------------------|---------------------|---------------------|---| | FAM+ | +/- | + | - | FluA POSITIVE RESULT | | Cy5+ | +/- | + | - | FluB POSITIVE RESULT | | ROX+ | +/- | + | - | RSV POSITIVE RESULT | | - | + | + | - | NEGATIVE RESULT | | +/- | +/- | + | ≤ 35 | EXPERIMENT FAILED due to test contamination | | +/- | +/- | + | > 35 | * | | - | - | + | - | SAMPLE PREPARATION FAILED | | +/- | +/- | - | +/- | EXPERIMENT FAILED | ^{*}Where the test sample is positive and the negative control is positive with a Cq > 35, the sample must be reinterpreted based on the relative signal strength of the two results: If the sample amplifies > 5 Cq earlier than the negative control, then the sample should be reinterpreted (via the table above) with the negative control verified as negative. If the sample amplifies < 5 Cq earlier than the negative control, then the positive sample result is invalidated, and the result should be determined inconclusive due to test contamination. The test for this sample should be repeated. #### **Positive Control** The positive control template is expected to amplify between Cq 16 - 23 in the FAM, Cy5 and ROX channels. Failure to satisfy this quality control criterion is a strong indication that the experiment has been compromised and should be repeated. #### **Internal PCR control** The Cq value obtained with the internal control will vary significantly depending on the extraction efficiency, the quantity of RNA added to the PCR reaction and the individual machine settings. Cq values of 28±3 are within the normal range. When amplifying a sample with a high genome copy number, the internal extraction control may not produce an amplification plot. This does not invalidate the test and should be interpreted as a positive experimental result. ### **Notices and disclaimers** This product is developed, designed and sold for research purposes only. It is not intended for human diagnostic or drug purposes or to be administered to humans unless clearly expressed for that purpose by the Food and Drug Administration in the USA or the appropriate regulatory authorities in the country of use. During the warranty period Primer Design Ltd genesig® detection kits allow precise and reproducible data recovery combined with excellent sensitivity. For data obtained by violation to the general GLP guidelines and the manufacturer's recommendations the right to claim under guarantee is expired. PCR is a proprietary technology covered by several US and foreign patents. These patents are owned by Roche Molecular Systems Inc. and have been sub-licensed by PE Corporation in certain fields. Depending on your specific application you may need a license from Roche or PE to practice PCR. Additional information on purchasing licenses to practice the PCR process may be obtained by contacting the Director of Licensing at Roche Molecular Systems, 1145 Atlantic Avenue, Alameda, CA 94501 or Applied Biosystems business group of the Applera Corporation, 850 Lincoln Centre Drive, Foster City, CA 94404. In addition, the 5' nuclease assay and other homogeneous amplification methods used in connection with the PCR process may be covered by U.S. Patents 5,210,015 and 5,487,972, owned by Roche Molecular Systems, Inc, and by U.S. Patent 5,538,848, owned by The Perkin-Elmer Corporation. ### **Trademarks** genesig[®] is a registered trademark of Primer Design Ltd. oasig[®] is a trademark of Primer Design Ltd. exsig[®]Mag is a trademark of Primer Design Ltd. The PCR process is covered by US Patents 4,683,195, and 4,683,202 and foreign equivalents owned by Hoffmann-La Roche AG. TaqMan[®] is a registered trademark of Roche Molecular Systems, Inc., The purchase of the Primer Design Ltd reagents cannot be construed as an authorization or implicit license to practice PCR under any patents held by Hoffmann-LaRoche Inc.